2nd International Workshop on EUV Lithography

Optics for EUV Lithography

Zeiss is working on two imaging systems

a-tool

to be integrated into ASML scanner

Micro Exposure Tool

collaboration with Lawrence Livermore National Labs

Overview

- 1) Optical Design
 - Illuminator
 - Projection Optics Box
- 2) Optics MetrologyOptics Fabrication
- 3) Conclusion

a-tool

NA = 0.25, resolution = 50 nm

source: LPP or discharge source

illuminator:

- 2 normal incidence mirrors
- 2 grazing incidence mirrors
- special component (integrator) required

projection optics:

- 6 off-axis aspheres

• adapt design to:

- source type (Laser produced plasma or discharge source) AND
- source characteristics (i.e. angular divergency, size, coherence properties)

• challenges are:

- efficient coupling of light
- uniform ring field fill
- uniform pupil fill
- telecentricity

ZZZES

Illuminator: possible design solution

- use of Ripple Plate as integrator element
- images of 2ndary light sources fill pupil (segmentation of pupil)
- critical: manufacturability of integrator element

Projection Optics box: Design optimization

Requirements are:

- mirror sizes < 400 mm
- small angle of incidence (AOI) on mirrors and small bandwidth of AOI
- small aspherical sag and small asphrical gradient

Overview

- 1) Optical Design
 - Illuminator
 - Projection Optics Box

2) Optics MetrologyOptics Fabrication

- 4) Coating Technology
- 5) Conclusion

Mirror	aspherical sag	aspherical gradient	Activities at CZ
ELT 2	2 µm	0.5 µm/mm	1997-1999
MET M1	4 µm	1.2 μm/mm	1999-2000
MET M2	6 µm	0.5 μm/mm	
Alpha-tool	≤15μm (?)	_ '	2000

2 D isotropic Power Spectral Density and surface specifications

Precision: 0.061nm rms

Estimated accuracy: 0.15nm rms

Optics fabrication: Fine correct. techniques

<u>Challenges:</u> - reach Spec for Figure, MSFR and HSFR simultaneously - develop processes for volume production

In Process Results for MET mirrors

	Specifications		In process data	
	MET Set 2	MET Set 1	M1	M2
Figure [nm rms]	0.25	0.35	0.35	1.6
MSFR [nm rms]	0.20	0.35	0.25	0.35
HSFR [nm rms]	0.10	0.50	0.45	0.45

Conclusion

- design solutions for an EUV illuminator are available
- a manufacturable 6-mirror design for the PO box has been developed
- Optics fabrication technology and Optics Metrology are progressing towards the very demanding specifications

EUVL optical systems are expected to be manufacturable

Part of this work was supported by:

- the European Commission within the ESPRIT program (Project EP 28160)
- 1999-2000 International SEMATECH Project Lith-112
- Verbundprojekt "Multilayer-Röntgenoptiken" 13N7878